Life Cycle Assessment of Man-made Cellulose Fibres
نویسندگان
چکیده
The production of textile materials has undergone dramatic changes in the last century. Man-made cellulose fibres have played an important role for more than 70 years. Today, the man-made cellulose fibre industry is the worldwide second largest biorefinery (next to the paper industry). In the last few years, the interest in man-made cellulose fibres has grown as a consequence of increased environmental awareness and the depletion of fossil fuels. However, an environmental assessment of modern man-made cellulose fibres has not been conducted so far. The purpose of this study is to assess the environmental impact of man-made cellulose fibres. Five staple fibre products, i.e., 1) Lenzing Viscose Asia, 2) Lenzing Viscose Austria, 3) Lenzing Modal, 4) Tencel Austria, and 5) Tencel Austria 2012, are analysed by means of Life cycle assessment (LCA). The system boundary is cradle to factory gate. We compare the results with conventional cotton, novel bio-based fibres (PLA fibres), and fossil fuel-based fibres (PET and PP). The inventory data for the production of man-made cellulose fibres were provided by Lenzing AG. The inventory data for cotton, PET, PP, and PLA were obtained from literature sources. The environmental indicators analysed include resources and the impact categories covered by CML 2000 baseline method. The indicators for resources include non-renewable energy use (NREU), renewable energy use (REU), cumulative energy demand (CED), water use, and land use. The environmental impact indicators covered by the CML method are global warming potential (GWP) 100a, abiotic depletion, ozone layer depletion, human toxicity, fresh water aquatic ecotoxicity, terrestrial ecotoxicity, photochemical oxidation, acidification, and eutrophication. In addition, the system boundary of cradle to factory gate plus end-of-life waste management was analysed for NREU and GWP. Furthermore, sensitivity analyses have been carried out to understand the influence of various assumptions and allocation methods.
منابع مشابه
Dyeing with Disperse Dyes
Before the First World War, almost all dyes were applied from solution in an aqueous dyebath to substrates such as cotton, wool, silk and other natural fibres. However, the introduction of a man-made fibre, cellulose acetate, with its inherent hydrophobic nature, created a situation where very few of the available dyes had affinity for the new fibre. Water-soluble anionic dyes had little substa...
متن کاملEvolution of self-generating porous microstructures in polyacrylonitrile-cellulose acetate blend fibres
• Gyration under pressure was used to spin polyacrylonitrile-cellulose acetate blend fibres. • Self-generating porous structures were obtained by controlling working pressure. • Artificial porous fibrous structures were made by leaching and etching. • Structural evolution inpolyacrylonitrilecellulose acetate blend fibres is ex-
متن کاملEnvironmental Assessment of Life Cycle of Waste Management System Based on LCAIWM1 Modeling (Case Study: Rasht City)
Background: Population growth and increased human activities in urban communities lead to large volumes of waste. This waste volume causes problems for human health and environmental pollution. Recently, a living environment assessment has been developed to improve the situation. The purpose of this study is to compare the environmental impacts of four urban waste disposal scenarios in Rasht ci...
متن کاملCellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view
During the last decade, major efforts have been made to develop adequate and commercially viable processes for disintegrating cellulose fibres into their structural components. Homogenisation of cellulose fibres has been one of the principal applied procedures. Homogenisation has produced materials which may be inhomogeneous, containing fibres, fibres fragments, fibrillar fines and nanofibrils....
متن کاملMoisture induced softening and swelling of natural cellulose fibres in composite applications
Composites based on natural cellulose fibres are susceptible to moisture. The fibres as well as the composite will inevitably soften and swell as moisture is absorbed. The intention of the present paper is to shed some light on the mechanisms behind softening and swelling. Also references to modelling work are made, to predict the moisture-induced dimensional stability. Characterisation techniq...
متن کامل